Direktívny vektor je vektor, ktorý určuje smer a smer danej čiary.
Inými slovami, vektor režiséra je zodpovedný za udanie smeru a významu čiary.
Vektor má veľkosť, smer a zmysel. Smer a smer sa líšia v tom, že existuje viac smerov, ale iba dva. Takže keď nakreslíme čiaru, museli by sme pridať jej smerový vektor, aby sme jej dali zmysel a smer. Inak by to malo iba veľkosť.
Vektor režiséra a predchádzajúci riadok sú rovnaké, ale majú opačný zmysel a smer.
Čiara v analytickej geometrii
V analytickej geometrii je priamka predstavovaná vektorom direktora v danej rovine.
Všeobecná rovnica priamky by bola:
Je vám vyššie uvedená rovnica známa? Rovnica priamky v rovine je rovnaká ako rovnica priamky v kalkulu. Rozdiel je iba v tom, že rovina je označená gréckym písmenom pi. Predchádzajúci výraz sa týka skutočnosti, že s týmito súradnicami existuje priamka v rovine zvanej pi.
Z rovnice priamky zostrojte smerový vektor priamky
Smerovací vektor priamky je možné zostrojiť z rovnice predchádzajúcej priamky.
Musíte len určiť, čo sú premenné (zvyčajne x, y, z) a zvoliť ich koeficienty. Potom sa získa vektor režiséra. Dôležité je, že to vždy musí byť vo forme:
Pretože sa počítajú znaky koeficientov, ak sa objaví rovnica priamky, ktorá nemá premennú Y. Izolované, bude potrebné izolovať, aby boli znaky koeficientov správne, a teda aj vektor riaditeľa.
Proces
- Identifikujte koeficienty premenných v rovnici priamky.
- Napíšte koeficienty.
Direktívny vektor priamky y = mx + n je (1, m).
Príklad
Vyhľadajte smerový vektor nasledujúcich riadkov:
Rovno 1
Prvým krokom je identifikácia koeficientov premenných.
Premenné v tomto prípade sú X a Y.. Potom sú koeficienty pre tieto dve premenné 4 a 5. Štruktúra rovnice sa zhoduje so všeobecnou rovnicou priamky, preto nie je potrebné meniť žiadne znamienko.
Smerovací vektor priamky je: (5,4).
Rovno 2
Prvým krokom je zvýraznenie koeficientov premenných.
V tomto prípade sú to premenné X a Y.. Koeficienty pre tieto dve premenné by teda boli 4 a -2. Štruktúra rovnice sa nezhoduje so štruktúrou všeobecnej rovnice priamky, preto by musela byť štruktúrovaná takto:
Preto budú koeficienty premenných 4 a 2.
Smerovací vektor priamky je: (2,4).